Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Neurobiol ; 56(6): 3948-3957, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30232777

RESUMEN

Axotomy results in permanent loss of function after brain and spinal cord injuries due to the minimal regenerative propensity of the adult central nervous system (CNS). To identify pharmacological enhancers of axon regeneration, 960 compounds were screened for cortical neuron axonal regrowth using an in vitro cortical scrape assay. Diltiazem, verapamil, and bromopride were discovered to facilitate axon regeneration in rat cortical cultures, in the presence of chondroitin sulfate proteoglycans (CSPGs). Diltiazem, an L-type calcium channel blocker (L-CCB), also promotes axon outgrowth in adult primary mouse dorsal root ganglion (DRG) and induced human sensory (iSensory) neurons.


Asunto(s)
Axones/fisiología , Diltiazem/farmacología , Regeneración Nerviosa/efectos de los fármacos , Amidas/farmacología , Animales , Axones/efectos de los fármacos , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo L/metabolismo , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Sinergismo Farmacológico , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Humanos , Ratones Endogámicos C57BL , Piridinas/farmacología , Ratas Sprague-Dawley
2.
J Neurotrauma ; 26(1): 81-95, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19125588

RESUMEN

The GTP-binding protein RhoA regulates microfilament dynamics in many cell types and mediates the inhibition of axonal regeneration by myelin and chondroitin sulfate proteoglycans. Unlike most other nonsteroidal anti-inflammatory drugs, ibuprofen suppresses basal RhoA activity (Zhou et al., 2003). A recent report suggested that ibuprofen promotes corticospinal axon regeneration after spinal cord injury (Fu et al., 2007). Here, we confirm that ibuprofen reduces ligand-induced Rho signaling and myelin-induced inhibition of neurite outgrowth in vitro. Following 4 weeks of subcutaneous administration of ibuprofen, beginning 3 days after spinal cord contusion, animals recovered walking function to a greater degree, with twice as many rats achieving a hind limb weight-bearing status. We examined the relative role of tissue sparing, axonal sprouting, and axonal regeneration in the action of ibuprofen. Histologically, ibuprofen-treated animals display an increase in spared tissue without an alteration in astrocytic or microglial reaction. Ibuprofen increases axonal sprouting from serotonergic raphespinal axons, and from rostral corticospinal fibers in the injured spinal cord, but does not permit caudal corticospinal regeneration after spinal contusion. Treatment of mice with complete spinal cord transection demonstrates long-distance raphespinal axon regeneration in the presence of ibuprofen. Thus, administration of ibuprofen improves the recovery of rats from a clinically relevant spinal cord trauma by protecting tissue, stimulating axonal sprouting, and allowing a minor degree of raphespinal regeneration.


Asunto(s)
Conos de Crecimiento/efectos de los fármacos , Inhibidores de Crecimiento/antagonistas & inhibidores , Ibuprofeno/farmacología , Regeneración Nerviosa/efectos de los fármacos , Traumatismos de la Médula Espinal/tratamiento farmacológico , Médula Espinal/efectos de los fármacos , Animales , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/uso terapéutico , Axotomía , Embrión de Pollo , Modelos Animales de Enfermedad , Vías Eferentes/efectos de los fármacos , Vías Eferentes/lesiones , Vías Eferentes/fisiopatología , Femenino , Conos de Crecimiento/fisiología , Inhibidores de Crecimiento/metabolismo , Ibuprofeno/uso terapéutico , Ratones , Células 3T3 NIH , Regeneración Nerviosa/fisiología , Tractos Piramidales/efectos de los fármacos , Tractos Piramidales/lesiones , Tractos Piramidales/fisiopatología , Núcleos del Rafe/efectos de los fármacos , Núcleos del Rafe/lesiones , Núcleos del Rafe/fisiopatología , Ratas , Ratas Sprague-Dawley , Médula Espinal/patología , Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/fisiopatología , Proteína de Unión al GTP rhoA/efectos de los fármacos , Proteína de Unión al GTP rhoA/metabolismo
3.
J Neurosci ; 28(49): 13161-72, 2008 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-19052207

RESUMEN

In schizophrenia, genetic predisposition has been linked to chromosome 22q11 and myelin-specific genes are misexpressed in schizophrenia. Nogo-66 receptor 1 (NGR or RTN4R) has been considered to be a 22q11 candidate gene for schizophrenia susceptibility because it encodes an axonal protein that mediates myelin inhibition of axonal sprouting. Confirming previous studies, we found that variation at the NGR locus is associated with schizophrenia in a Caucasian case-control analysis, and this association is not attributed to population stratification. Within a limited set of schizophrenia-derived DNA samples, we identified several rare NGR nonconservative coding sequence variants. Neuronal cultures demonstrate that four different schizophrenia-derived NgR1 variants fail to transduce myelin signals into axon inhibition, and function as dominant negatives to disrupt endogenous NgR1. This provides the first evidence that certain disease-derived human NgR1 variants are dysfunctional proteins in vitro. Mice lacking NgR1 protein exhibit reduced working memory function, consistent with a potential endophenotype of schizophrenia. For a restricted subset of individuals diagnosed with schizophrenia, the expression of dysfunctional NGR variants may contribute to increased disease risk.


Asunto(s)
Conos de Crecimiento/metabolismo , Inhibidores de Crecimiento/genética , Proteínas de la Mielina/genética , Fibras Nerviosas Mielínicas/metabolismo , Receptores de Superficie Celular/genética , Esquizofrenia/genética , Esquizofrenia/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/fisiopatología , Células COS , Embrión de Pollo , Chlorocebus aethiops , Mapeo Cromosómico , Codón/genética , Femenino , Proteínas Ligadas a GPI , Predisposición Genética a la Enfermedad/genética , Conos de Crecimiento/ultraestructura , Inhibidores de Crecimiento/metabolismo , Humanos , Masculino , Ratones , Ratones Noqueados , Mutación/genética , Proteínas de la Mielina/metabolismo , Neurogénesis/genética , Plasticidad Neuronal/genética , Receptor Nogo 1 , Técnicas de Cultivo de Órganos , Ratas , Receptores de Superficie Celular/metabolismo , Esquizofrenia/fisiopatología
5.
Philos Trans R Soc Lond B Biol Sci ; 361(1473): 1593-610, 2006 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-16939977

RESUMEN

Robust axonal growth is required during development to establish neuronal connectivity. However, stable fibre patterns are necessary to maintain adult mammalian central nervous system (CNS) function. After adult CNS injury, factors that maintain axonal stability limit the recovery of function. Extracellular molecules play an important role in preserving the stability of the adult CNS axons and in restricting recovery from pathological damage. Adult axonal growth inhibitors include a group of proteins on the oligodendrocyte, Nogo-A, myelin-associated glycoprotein, oligodendrocyte-myelin glycoprotein and ephrin-B3, which interact with axonal receptors, such as NgR1 and EphA4. Extracellular proteoglycans containing chondroitin sulphates also inhibit axonal sprouting in the adult CNS, particularly at the sites of astroglial scar formation. Therapeutic perturbations of these extracellular axonal growth inhibitors and their receptors or signalling mechanisms provide a degree of axonal sprouting and regeneration in the adult CNS. After CNS injury, such interventions support a partial return of neurological function.


Asunto(s)
Axones/fisiología , Sistema Nervioso Central/crecimiento & desarrollo , Animales , Vaina de Mielina/metabolismo , Transducción de Señal
6.
Eur J Neurosci ; 22(3): 587-94, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16101740

RESUMEN

Methylprednisolone (MP) is a synthetic glucocorticoid used for the treatment of spinal cord injury (SCI). Soluble Nogo-66 receptor (NgR) ectodomain is a novel experimental therapy for SCI that promotes axonal regeneration by blocking the growth inhibitory effects of myelin constituents in the adult central nervous system. To evaluate the potential complementarity of these mechanistically distinct pharmacological reagents we compared their effects alone and in combination after thoracic (T7) dorsal hemisection in the rat. Treatment with an ecto-domain of the rat NgR (27-310) fused to a rat IgG [NgR(310)ecto-Fc] (50 microm intrathecal, 0.25 microL/h for 28 days) or MP alone (30 mg/kg i.v., 0, 4 and 8 h postinjury) improved the rate and extent of functional recovery measured using Basso, Beattie, Bresnahan (BBB) scoring and footprint analysis. The effect of MP treatment on BBB score was apparent the day after SCI whereas the effect of NgR(310)ecto-Fc was not apparent until 2 weeks after SCI. NgR(310)ecto-Fc or MP treatment resulted in increased axonal sprouting and/or regeneration, quantified by counting biotin dextran amine-labeled corticospinal tract axons, and increased the number of axons contacting motor neurons in the ventral horn gray matter caudal to the lesion. Combined treatment with NgR(310)ecto-Fc and MP had a more pronounced effect on recovery of function and axonal growth compared with either treatment alone. The data demonstrate that NgR(310)ecto-Fc and MP act in a temporally and mechanistically distinct manner and suggest that they may have complementary effects.


Asunto(s)
Metilprednisolona/uso terapéutico , Receptores de Péptidos/uso terapéutico , Traumatismos de la Médula Espinal/tratamiento farmacológico , Análisis de Varianza , Animales , Axones/efectos de los fármacos , Axones/fisiología , Conducta Animal , Biotina/análogos & derivados , Biotina/metabolismo , Células Cultivadas , Embrión de Pollo , Dextranos/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Quimioterapia Combinada , Conducta Exploratoria/efectos de los fármacos , Femenino , Proteínas Ligadas a GPI , Ganglios Espinales/citología , Inmunoglobulina G/uso terapéutico , Laminectomía/métodos , Proteínas de la Mielina , Vaina de Mielina/metabolismo , Regeneración Nerviosa/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/fisiología , Receptor Nogo 1 , Tractos Piramidales/efectos de los fármacos , Tractos Piramidales/metabolismo , Ratas , Ratas Long-Evans , Receptores de Superficie Celular , Receptores de Péptidos/biosíntesis , Receptores de Péptidos/química , Receptores de Péptidos/inmunología , Proteínas Recombinantes/uso terapéutico , Recuperación de la Función/efectos de los fármacos , Traumatismos de la Médula Espinal/fisiopatología
7.
J Neurosci ; 25(22): 5298-304, 2005 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-15930377

RESUMEN

Nogo is a myelin-derived protein that limits axonal regeneration after CNS injury. A short hydrophilic Nogo-66 loop between two hydrophobic domains of Nogo binds to a Nogo-66 receptor (NgR) to inhibit axonal outgrowth. Inhibition of axon outgrowth and cell spreading by a second Nogo domain, termed Amino-Nogo-A, is thought to be mediated by a distinct receptor complex. Here, we define a novel Nogo-A-specific domain in Amino-Nogo that binds to NgR with nanomolar affinity. This second domain of 24 amino acids does not alter cell spreading or axonal outgrowth. Fusion of the two NgR-binding Nogo-A domains creates a ligand with substantially enhanced affinity for NgR and converts a NgR antagonist peptide to an agonist. Thus, NgR activation by Nogo-A involves multiple sites of interaction between Nogo-A and NgR.


Asunto(s)
Proteínas de la Mielina/antagonistas & inhibidores , Proteínas de la Mielina/metabolismo , Receptores de Superficie Celular/antagonistas & inhibidores , Receptores de Superficie Celular/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Fosfatasa Alcalina/genética , Animales , Axones/fisiología , Sitios de Unión , Línea Celular , Embrión de Pollo , Chlorocebus aethiops , Proteínas Ligadas a GPI , Glutatión Transferasa/genética , Humanos , Técnicas In Vitro , Ligandos , Ratones , Proteínas de la Mielina/agonistas , Proteínas de la Mielina/química , Proteínas de la Mielina/genética , Proteínas Nogo , Receptor Nogo 1 , Péptidos/química , Péptidos/farmacología , Isoformas de Proteínas/agonistas , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína , Receptores de Superficie Celular/agonistas , Proteínas Recombinantes de Fusión/genética
8.
Mol Cell Neurosci ; 29(1): 26-39, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15866044

RESUMEN

Axon growth after spinal injury is thought to be limited in part by myelin-derived proteins that act via the Nogo-66 Receptor (NgR). To test this hypothesis, we sought to study recovery from spinal cord injury (SCI) after inhibiting NgR transgenically with a soluble function-blocking NgR fragment. Glial fibrillary acidic protein (gfap) gene regulatory elements were used to generate mice that secrete NgR(310)ecto from astrocytes. After mid-thoracic dorsal over-hemisection injury, gfap::ngr(310)ecto mice exhibit enhanced raphespinal and corticospinal axonal sprouting into the lumbar spinal cord. Recovery of locomotion is improved in the gfap::ngr(310)ecto mice. These data indicate that the NgR ligands, Nogo-66, MAG, and OMgp, play a role in limiting axonal growth in the injured adult CNS and that NgR(310)ecto might provide a therapeutic means to promote recovery from SCI.


Asunto(s)
Axones/fisiología , Terapia Genética/métodos , Proteínas de la Mielina/genética , Proteínas de la Mielina/fisiología , Regeneración Nerviosa/fisiología , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/fisiología , Traumatismos de la Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/terapia , Animales , Femenino , Proteínas Ligadas a GPI , Locomoción , Ratones , Ratones Transgénicos , Receptor Nogo 1 , Recuperación de la Función
9.
J Neurosci ; 24(46): 10511-20, 2004 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-15548666

RESUMEN

The growth of injured axons in the adult mammalian CNS is limited after injury. Three myelin proteins, Nogo, MAG (myelin-associated glycoprotein), and OMgp (oligodendrocyte myelin glycoprotein), bind to the Nogo-66 receptor (NgR) and inhibit axonal growth in vitro. Transgenic or viral blockade of NgR function allows axonal sprouting in vivo. Here, we administered the soluble function-blocking NgR ectodomain [aa 27-310; NgR(310)ecto] to spinal-injured rats. Purified NgR(310)ecto-Fc protein was delivered intrathecally after midthoracic dorsal over-hemisection. Axonal sprouting of corticospinal and raphespinal fibers in NgR(310)ecto-Fc-treated animals correlates with improved spinal cord electrical conduction and improved locomotion. The ability of soluble NgR(310)ecto to promote axon growth and locomotor recovery demonstrates a therapeutic potential for NgR antagonism in traumatic spinal cord injury.


Asunto(s)
Axones/fisiología , Proteínas de la Mielina/antagonistas & inhibidores , Glicoproteína Asociada a Mielina/antagonistas & inhibidores , Glicoproteína Asociada a Mielina/metabolismo , Receptores de Péptidos/fisiología , Traumatismos de la Médula Espinal/patología , Animales , Axones/metabolismo , Potenciales Evocados Motores , Femenino , Proteínas Ligadas a GPI , Inyecciones Espinales , Actividad Motora , Glicoproteína Mielina-Oligodendrócito , Proteínas Nogo , Receptor Nogo 1 , Oligodendroglía/metabolismo , Fragmentos de Péptidos/administración & dosificación , Fragmentos de Péptidos/farmacología , Ratas , Ratas Sprague-Dawley , Receptores de Superficie Celular , Proteínas Recombinantes de Fusión/administración & dosificación , Proteínas Recombinantes de Fusión/farmacología , Serotonina/metabolismo , Solubilidad , Médula Espinal/fisiopatología , Médula Espinal/ultraestructura , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/fisiopatología
10.
Circ Res ; 93(1): 61-8, 2003 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-12791708

RESUMEN

We investigated roles for homocellular (endothelium or smooth muscle) and heterocellular (myoendothelial) conduction pathways along hamster cheek pouch arterioles in vivo (n=64; diameter, 33+/-1 microm). Endothelium-dependent and -independent vasoactive agents were delivered from micropipettes (0.5 or 1 second pulse) onto an arteriole while observing diameter changes at defined distances along the vessel. Acetylcholine (ACh) produced maximal diameter (63+/-1 microm) locally and vasodilation conducted rapidly ( approximately 10 microm response at 2 mm, <1 second). Responses to bradykinin (BK) were similar, whereas sodium nitroprusside produced maximal dilation locally without conduction. KCl evoked biphasic conduction of vasoconstriction and vasodilation, whereas phenylephrine (PE) produced conducted vasoconstriction. Disrupting the integrity of endothelium as a conduction pathway using focal light-dye treatment (LDT) abolished conducted vasodilation to BK and to KCl but not to ACh. Disruption of smooth muscle integrity with LDT abolished conducted vasoconstriction with no effect on conducted vasodilation. After LDT of respective cell layers at sites 1 mm apart, vasodilation to ACh conducted past disrupted smooth muscle or disrupted endothelium, but not beyond both sites in series. The loss of conduction after selective LDT indicates a lack of effective myoendothelial coupling along the arteriolar wall. During NO synthase inhibition (L-NA, 100 micromol/L), conducted vasodilation was abolished to BK and to KCl yet remained intact to ACh. However, after LDT of smooth muscle, L-NA inhibited conduction to ACh by 60%. Thus, conduction of vasodilation entails a wave of NO release along arteriolar endothelium that is masked when smooth muscle provides a parallel conduction pathway.


Asunto(s)
Arteriolas/fisiología , Endotelio Vascular/fisiología , Músculo Liso Vascular/fisiología , Acetilcolina/farmacología , Animales , Arteriolas/efectos de los fármacos , Bradiquinina/farmacología , Bovinos , Mejilla/irrigación sanguínea , Cricetinae , Dextranos/química , Dextranos/farmacología , Inhibidores Enzimáticos/farmacología , Fluoresceína-5-Isotiocianato/química , Fluoresceína-5-Isotiocianato/farmacología , Masculino , Mesocricetus , Óxido Nítrico/antagonistas & inhibidores , Óxido Nítrico/biosíntesis , Óxido Nítrico/fisiología , Óxido Nítrico Sintasa/antagonistas & inhibidores , Nitroarginina/farmacología , Fenilefrina/farmacología , Cloruro de Potasio/farmacología , Albúmina Sérica/química , Albúmina Sérica/farmacología , Vasoconstricción/efectos de los fármacos , Vasoconstrictores/farmacología , Vasodilatación/efectos de los fármacos , Vasodilatadores/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...